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A game-theoretical problem whose dynamics is described by a partial differential equation is considered. The players’ controls, 
representing additively the right-hand side of the equation, are subject to integral constraints. The goal of the pursing player, 
who possesses information on the instantaneous value of the evader’s control, is to bring the system to an undisturbed state. To 
solve the problem, the method of system decomposition developed in [l] for a controlled system is used. The optimal pursuit 
time is found and the players’ optimal controls are constructed in explicit form. 0 2003 Elsevier Science Ltd. All rights reserved. 

In an earlier paper [2], a condition was established for the pursuit problem considered here to be solvable. 
This paper is as continuation of [l-.5]. 

1. FORMULATION OF THE PROBLEM 

Let A be a differential operator defined in the space L2(sZ) as follows [ 11: 

X E R; Uii(x) = Uji(x) E Cl(~) (1.1) 

where Q is a bounded domain in R”. The domain of definition D(A) of the operator,4 is e2(Q) (the 
space of twice continuously differentiable functions with compact support). The coefficients aij satisfy 
the following condition: A constant y # 0 exists such that 

which means that A is an elliptic operator. Putting 

(z,yjA = (Az,y), z,y E d*(Q) 

it can be shown that (.,.)A satisfies all the requirements for a scalar product. Thus, d2(Q) becomes a 
Hilbert space, but it is, not complete relative to the norm generated by the scalar product (.,.)A. 
Completing the space C2(Q) relative to the norm 

we obtain a complete Hilbert space, called the energy space of the operator A and denoted by HA. 
It is well known [6] that an operatorA satisfying condition (1.2) has a discrete spectrum, that is, an 

infinite sequence h,, h2, . . . . 0 < h1 S h2 S . . . of generalized eigenvalues exists with a unique limit at 
infinity, and also a sequence cpl, (p2, . . . of generalized eigen elements, which is complete in the space 
L2(Q). Without loss of generality, we may assume that (cpi, Cpi) = S,, where S, is the Kronecker delta. 

Using these data, we construct the following spaces (which are of course associated with the operator 
A) [7]. Let 
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We define products in the spaces 1, and Hr(Q) as follows: 

Similarly 

(f9&!), =(a,P),; f =s %cPi9 g=i, Pi’Pi (IIf Hall> 

Note that Ha(Q) = L*(Q) and H,(Q) C H, (IR) for s < r. 
Let C(0, T; H,(Q)) (L2(0, T; H,(Q))) denote the space of all continuous (square summable) functions 

in [0, q with values in H,(Q), where T is a positive constant. 
The equations arising in what follows will be understood in the sense of the theory of distributions 

(generalized functions) [7]. 
Consider the differential game 

dz(t)/dt + AZ(t) =-u(t) + u(t) (1.3) 
u(.),u (.) E ~(0, T; H,(Q)), z(O) = 20 * 0, GJ E H,+,(Q) 

The operatorA is given in the form of (1.1). 
It was proved in [7] that problem (1.3) has a unique solution z(t) in the space C(0, T; H,+,(Q)), if 

z. E H,+l(Q) for some r 3 0. 
The function u(t), u(t), 0 < t d T, will be called the controls of the first player (the pursuer) and the 

second player (the evader), respectively. They are subject to the constraints 

where p and o are non-negative constants. Controls u(t), u(t), 0 s t s T satisfying conditions (1.4) are 
said to be admissible. 

Definitions. 1. We shall say that a pursuit can be completed in game (1.3), (1.4) from initial point z0 
in time T = T(z,) 2 0 if one can choose a value u(t) in such a way that, for any admissible control u(.) 
of the evader, z(t’) = 0 for some t’ E [0, T], where z(.) is a solution of Eq. (1.3) for the controls u and 
u. Under these conditions, to construct the pursuer’s control u(t) at each instant of time t E [0, T], it 
is permissible to use z(t) and the quantity u(t). The number T is called the guaranteed pursuit time. 
The pursuer’s goal is to minimize the guaranteed pursuit time, while the evader’s goal is to maximize 
it. 

2. If an admissible control of the evader u(.) exists such that, for any admissible control u(.) of the 
pursuer, z(t) f 0 for t E [0, T], then the guaranteed pursuit time T is called the optimal pursuit time. 
Under those conditions, to construct u(t) at every instant of time t E [0, T] it is permissible to use z(t) 
and the quantities 

p(t) = (p* - F(t))“*, a(t) = (02 -G(t))“* 

where 

ui(t) = (u(t), Vi)7 Q(t) = (U(t), Cpi) (i=l, 2~ . ..j are the Fourier coefficients of the functions u(t) and u(t). 

Problem. For every initial point, it is required to find the optimal pursuit time in the game (1.3) (1.4). 
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2. SOLUTION OF THE PROBLEM 

Let t = 6 be a solution of the equation 

where zko = (zo, (P,J are the Fourier coefficients of the function zo. 
It can be verified that the left-hand side of Eq. (2.1) is a decreasing function of the variable t, t 2 0, 

which tends to zero as t -+ M and to infinity as t -+ 0. Consequently, Eq. (2.1) has a unique solution. 

Theorem. If p > o, then the number 6 is the optimal pursuit time in the game (1.3) (1.4). 

Proof. 1. Construction of the pursuer’s control. Let u(.) be an arbitrary control of the evader. Let us 
express z(t) and the functions u(t) and u(t) as Fourier series 

(2.2) 

u(t)= : u,(f)(&, F(6)cp2, u(t)= 5 v,(f)$$, G(6)-2, uk(‘), uk(‘)Eb (2.3) 
k=I k=l 

Substituting expansions (2.2) and (2.3) into Eq. (1.3) and equating the corresponding coefficients of 
the complete system {(Pk}, we obtain aninfinite system of differential equations 

ik(f)+hktk(f)= -u,(t)+uk(t), zk(o)=zkO, k=1,2 ,... 

Integrating each equation of this system with the appropriate initial data, we obtain 

zk(t) = e-“’ i&O -~(u,(s)-u,(s))e”“dr). k = 1,2,... 

where zko=(zo, (Pk) are the Fourier coefficients of the function zo. 
Define the pursuer’s control as 

I uio(t)+ui(t), i = 1,2 )..., 0 s t Q 6 
Ui(f) = 

0,1>6 
) u;&) = ek”r;:(b)zio 

That the pursuer’s control we have constructed is admissible follows from the relations 

P(tV<[~ h:8u60)dr)‘2+~“2(B)~ 

112 

s g A.; y r;2(ti)e2ki'z;dt +o=z"2(9)+0=p-cT+a=p 
i=l 0 

(we have used the definition of the number 19). 
2. The possibility completing the game. Using (2.4) we have 

t,(s) = e-“’ i&O - = e-‘.‘“(zko - zko) = 0 

3. The construction of the evader’s control. We define the evader’s control as follows: 

vi(r) = q(6)d 
P-0 

e*“zio, 0 C t G 6, if p(t) > b(t) 

(2.4) 

(2.5) 
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But if P(T) = o(z) for the first time at some time t, 0 c r < 6, then the evader’s control is identified 
with a control V, to be defined below (see formula (2.10)). 

That the evader’s control is admissible follows from the relations 

and the construction of the control VO. 
The impossibility of completing the pursuit in the interval [0,8) 

4. Lemma. Among all controls u = u(t) = (ur(t), u*(t), .), 0 =Z t c r such that 

bu,(r)eAk’ds=zko, k=l,2,.. 

the control 

u(t): uk(t)=rk(~)eAkrzkO, k=l,2,... 

(2.6) 

(2.7) 

minimizes the functional F(z). 

Proof. Multiply both sides of equality (2.6) by X~Q(Z)Z~~ and sum over k. This gives 

C(T) = ] 5 h~rk(~)uk(s)eAkSzkods d 
0 k=l 

L II2 

G i hi i $ (7)e2Aksztods) F”2(r) = P2(2)F”*(T) 
\k=l 0 / 

(where we have used the Cauchy-Bunyakovskii inequality). 

W(r) s v(T) 

Consequently 

(2.8) 

Thus, inequality (2.8) is true for any control u(t), 0 d l 6 z satisfying (2.6). 
On the other hand, it can be verified that control (2.7) satisfies (2.8) with an equality sign. 
Suppose the evader uses control (2.5) just constructed. We shall first show that, as long as the inequality 

p(t) > o(t), t E [O; 13) is satisfied, the game cannot be completed. Suppose, on the contrary, that at some 
time t’, 0 c t’< 6 for which 

PW 2 (TO? 

the game is completed, that is, z(t’) = 0. 
Taking (2.5) into consideration, we infer from the equality z(t’) = 0 that 

(2.9) 

I’ 
j uk (s)e”‘“ds = zko + iv k(s)eAksds = 
0 0 

By the lemma, among all controls u(t), 0 c t < t’, satisfying this inequality, the control u(t) 

uk(t)=e 
Ikr 

k0, Ostat' 

minimizes the functional F(t’). Therefore, taking the definition of the number 6 into consideration, we 
have 
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2 

F(f)-G(r')a 2 A' ( cs 1 I' k rk(r')+ -r&(6) z;(Je2%& k=, 
P-0 0 

= Z(f) + 2a(p - 0) > X(6) + 2o(p - 6) = P2 - a2 

Consequently 
p’ - F(t) < 4 - G(t) 

or, what is the same, p2(t’) c a2(t’), contradicting inequality (2.9). Thus, the pursuer, while maintaining 
the inequality p(t) > o(t), cannot complete the game in the interval [0,6). 

Suppose p(7) = o(r) for the first time at some z E (0,s). Construct a control for the evader for 
t 2 z. Since z(r) z 0, it necessarily follows that for some components z&r) + 0, k E {1,2, . ..I. We may 
assume, without loss of generality, that zr(z) f 0. To fix our ideas, suppose that zr(r) > 0. Put 

fi=z+ih, i=O,l,..., n, fo==‘5, t,=9; ai =r! Iu,(s)f dsr, i=O,l,..., n-l 

where h is a positive number to be chosen later. The evader’s control for t 2 z is now defined as 

0, tostsr,, 
U,(t)= (Cti-~eA1’)lgj, fi Ctdti+l, i= 1,2,... (2.10) 

0, tal? 

u&f) = 0, k = 2, 3, . . I 

where 

(2.11) 

Denote this evader’s control by V,. Then for f E [ts, tr), using the Cauchy-Bunyakovskii inequality, 
we have 

I/2 

z*(t)=z,(2)- ~u,(s)e%s3 Z,(T)- ~u:(s)drje2Al'ds 2 ZI (5) - &P (2.12) 
‘0 ‘0 ‘0 I 

For ttc t c 6, by (2.10), we have (assuming that t E [f,; tk+r] C [t; S]) 

z,(t)=Z,(Z)+ ~[u,(S)--,(s)]eA”ds= 
10 

k-l 'i+l k-l *i+l 

=Zl(T)+ C j ul(s)ehlsds- C j u,(s)eblsds+ ju,(s)eAISds- 
i=l ti i=O li It 

112 
k-1 

2 Z,(T)+ C g&Xi-l - C uF(s)ds”j’ e2'lsds - 
i=l ‘i 

1 
112 

i=l i=I 

3 ZI (7) - i Ai-lai-1 - 2gkP; Ai = gi - gi+l 
i=l 

(2.13) 
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Using relations (2.11), we have 
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(2.14) 

where C is some positive number. Then, bearing in mind the inequalities 

kh d 6, ctj s p 

we infer from relations (2.13) and (2.14) that 

z,(t) 3 z,(r)- Ch3’2 i e%cj-, - 2g,p 2 z,(r) - (Ce”‘“~h1’2 + 2gk )P (2.15) 
i=l 

The constant h may be chosen so that expressions (2.12) and (2.15) exceed 2,(~)/2. Then for such h 

21 to 3 Z] m/2 > 0, t E [r, S] 

In additkm, 

= f,(%tk) s i f,,(r,t)< p’(r) = 02(.5) 
k=l 

fk(r9r)=k\jIuk(s)12 ds, Jk(t9t)=~~iIuk(s)12 ds 
T T 

Consequently, control (2.10) is admissible. 

1. 
2. 

3. 
4. 

5. 
6. 
7. 
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